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Abstract

Comprehensive two-dimensional gas chromatography (GC× GC) has proven to be an extremely powerful separation technique for the analysis of
complex volatile mixtures. This separation power can be used to discriminate between highly similar samples. In this article we will describe the use
of GC× GC for the discrimination of crude oils from different reservoirs within one oil field. These highly complex chromatograms contain about
6000 individual, quantified components. Unfortunately, small differences in most of these 6000 components characterize the difference between
these reservoirs. For this reason, multivariate-analysis (MVA) techniques are required for finding chemical profiles describing the differences
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etween the reservoirs. Unfortunately, such methods cannot discern between ‘informative variables’, or peaks describing differenc
amples, and ‘uninformative variables’, or peaks not describing relevant differences. For this reason, variable selection techniques ared. A
election based on information between duplicate measurements was used. With this information, 292 peaks were used for building a di
odel. Validation was performed using the ratio of the sum of distances between groups and the sum of distances within groups. This s

n the detection of an outlier, which could be traced to a production problem, which could be explained retrospectively.
2005 Elsevier B.V. All rights reserved.
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. Introduction

Chemists working in (gas) chromatography are continuously
aced with improved instrumentation and techniques. Develop-

ents in injection techniques facilitate the injection of large
olumes and ‘dirty’ samples, while selective detection allows
etection of components at low levels. Moreover, developments

n electronics, such as flow control, strongly improve the repeata-
ility and reproducibility of the technique.

All these developments have resulted in a dramatically
nhanced robustness of (gas) chromatographic methods. They
lso create the possibility to analyze large numbers of samples in
more-or-less automated way, facilitating other types of applica-

ions, such as high-throughput analysis and metabolism studies
metabolomics).

Instrumental advances also affect the applicability of compre-
ensive two-dimensional gas chromatography (GC× GC). With

∗ Corresponding author. Tel.: +31 20 630 3601; fax: +31 20 630 2911.
E-mail address: v.vanmispelaar@shell.com (V.G. van Mispelaar).

this technique, highly complex semi-volatile mixtures can
analyzed in unsurpassed detail. GC× GC can separate compl
samples into thousands of individual components. Most e
ples in the literature concern a single or a few samples. How
the comparison of a series of GC× GC chromatograms can yie
very valuable information as well. Especially for highly sim
lar samples, high-resolution techniques are essential to r
minute differences.

Large data sets require other processing approaches
conventional chromatograms. If there is no prior informa
regarding components of interest, the traditional approac
quantifying all components present and comparing them un
ately is clearly not an attractive strategy. Multivariate-ana
(MVA) techniques provide better options for processing s
large data sets. Such an approach is already adopted
example, the field of metabolomics[1,2]. By comparing two (o
more) groups of subjects (e.g. sick versus healthy, treated
sus untreated), valuable information on metabolic differe
between these groups can be obtained. However, this
mation can only be attained when the number of objec
sufficiently large to eliminate natural variation between the
021-9673/$ – see front matter © 2005 Elsevier B.V. All rights reserved.
oi:10.1016/j.chroma.2005.09.063
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jects. This approach is not restricted to systems biology. It is also
is applicable to other highly complex mixtures, such as crude
oil. The chemical composition of crude oil is determined by its
origin and geochemical history. Both chemical composition and
boiling-point range can vary widely between different oil fields.
However, different reservoirs within one field have a similar ori-
gin and a highly similar geochemical history, which can result
in minute differences in chemical composition.

Crude oil can contain hydrocarbons from C4 up to C100 or
even higher, and the number of theoretical isomers is stunningly
large. Techniques such as GC× GC and GC× GC–MS are by
far not sufficient to reveal the full complexity of this class of
mixtures. The number of components that can be separated and
identified using these techniques is nonetheless impressive.

From a chemometric point of view, these chromatograms are
highly interesting. Each object (or sample) is described by a large
number of variables (or peaks). Classification of these objects
according to their origin can be achieved using discriminant-
analysis (DA) methods. Such methods try to find profiles of
variables in the data that differentiate between groups of objects.
A priori information (which object belongs to which group) is
required. In many cases this information seems obvious. For
example, patients are healthy or sick. However, this informa-
tion is not necessarily correct. In the example used, patients
may not be diagnosed correctly or they may be suffering from
other disorders. Incorporating incorrect information into these
s ous
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shorter length) than the first-dimension column, so that separa-
tions in the second dimension are essentially much faster. The
stationary phase is selected such that this column separates on
properties other than volatility, such as molecular shape or polar-
ity. The two columns are coupled using a so-called modulator.
This device facilitates the continuous accumulation, refocusing
and injection of small portions of the first-column effluent into
the second-dimension column. With each modulation, a new
second-dimension chromatogram is started. The detector, which
is positioned at the end of the second-dimension column, records
these fast chromatograms. At the end of a chromatographic
run, the chromatogram contains many of these fast separations
in series. After ‘demodulation’[5], a two-dimensional chro-
matogram is obtained, which is usually represented by a colour
or contour plot.

In many applications, GC× GC has proven to be an excellent
technique for the separation of very complex samples, such as
petrochemical products[6–8], essential oils[9,10], fatty acids
[11,12], doping control[13], flavour analysis[14], residue analy-
sis[15], and cigarette smoke[16]. The combination of GC× GC
and MVA techniques is described in various references with the
aim of deconvolution[17] and enhancing the detection limit
[18]. Johnson et al. describe the use of a high-speed GC× GC
for pattern recognition of jet fuels[19].

2.2. Data analysis
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o-called “supervised techniques” will clearly lead to errone
odels. On the other hand, exploratory techniques, such as

ipal component analysis, are not beneficial if the data con
high number of uninformative variables.
Therefore, a combination of supervised techniques, fo

iscovery of discriminating variables, and unsupervised t
iques, for finding natural clusters in data, is potentially v
trong.

In this study, we will apply GC× GC to a set of crude
il samples from three reservoirs within an oil field. Si
o prior knowledge was available on the chemical com
ents that would discriminate between the three fields, as
omponents as possible needed to be separated and qua
ultivariate-analysis techniques facilitated the recovery of

riminating components or component profiles.

. Theory

.1. GC × GC

One of the greatest and most significant advances fo
haracterization of complex mixtures of volatile compounds
een the advent of comprehensive two-dimensional gas
atography. This technique was pioneered and advocat

he late Phillips and co-workers[3,4]. Two different GC column
re used in GC× GC. The fist-dimension column is (usually
onventional capillary GC column, with a typical internal dia
ter of 250�m. Most commonly, this column contains a n
olar stationary phase, so that it separates components l
ased on their vapor pressures (boiling points). The sec
imension column is considerably smaller (smaller diam
-
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Many analytical techniques exist that can generate large
ets. The human mind is only capable of interpreting da
hree-dimensions. Visualization of higher-dimensionality
equires reduction techniques. Fortunately, multivariate a
is offers various approaches to reduce the data dimens
ty.

Classification and clustering problems can be solved u
wo types of techniques. Exploratory methods extract (n
al) patterns in the data. Supervised classification techn
se prior information (which objects belong to which grou

o find differences (or similarities) between groups of s
les.

.2.1. Exploratory methods

.2.1.1. PCA. The most commonly encountered explorat
ethod is principal-component analysis (PCA). In PCA,
riginal variables are replaced by a (strongly) reduced nu
f uncorrelated (orthogonal) variables, called the principal c
onents.

Mathematically:

= T × PT + E (1)

here X: original data set containingn (samples)× p (vari-
bles);T: scoresn (samples)× F (principal components);PT:

ransposed loadings containingF (principal components)× p
variables);E: residuals, variation not explained by model

The principal components are constructed in such a way
he first principal component (PC1) represents the main so
f variation in the original data set. The second PC is orthog

o the first and represents the maximum variance not expl
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in PC1. The third PC again is orthogonal to the first two PC’s
etc. Each PC is a linear combination of the original variables.
The contribution of each variable is expressed in the principal-
component loadings.

The number of PCs gives an indication of the model complex-
ity. If the data are highly correlated, a few PCs will be sufficient
to reproduce the original data. A way of presenting the data from
this technique is the score plot. Related objects (belonging to the
same groups) have similar scores and will consequently tend to
cluster.

2.2.1.2. Projection pursuit. Another unsupervised projection
technique is projection pursuit (PP)[20]. Unlike PCA, the main
objective of which is to explain variance in the data, PP searches
interesting low-dimensional linear projections in the data. This
is achieved by optimizing the projection index (PI), which can
be regarded as an objective function. In literature, several pro-
jection indices have been described[20].

2.2.2. Supervised techniques
Discriminant-analysis[21,22] methods can be applied if

attention is focused on differences between known groups of
samples. The technique is based on the assumption that samples
of the same group are more similar than samples belonging to
different groups. The goal of DA is to find and identify struc-
t een
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ber of variables. In situations where the number of variables
exceeds the number of objects, PCA and partial least squares
(PLS) are used to reduce the dimensionality of the data. The
principal components or latent variables are then subjected to
linear discriminant analysis. These techniques are described
in the literature as partial-least-squares discrimination analysis
(PLSDA) [29] and principal-component discriminant analysis
(PCDA)[30]. They have been used successfully in various types
of applications. Regularized discriminant analysis (RDA)[31]
has been proposed for data sets where the number of variables
only slightly exceeds the number of objects.

2.2.2.1. PCDA. Discriminant analysis of data containing more
variables than objects can be preceded by principal-component
analysis to reduce the number of variables. The projections
(scores) of the samples on the principal components are used
as a starting point for FLDA. Graphical representation of both
the objects (in a score plot) and the discriminant loadings pro-
vides valuable information on relations between objects and on
important variables in the data set.

2.2.3. Validation
There are several ways to validate a (discrimination) model.

In cross validation one or several objects are excluded, model is
created using the remaining objects, and the group membership
o odel
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data
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les,
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t as the
d ithin-

es wi
ures in the original data, which show large differences betw
he group means. This process requires a priori knowledg
hich samples belong to the same group.
Discriminant analysis has been used for a wide varie

roblems in analytical chemistry. For example, the differe
ion of coffee[23,24], wine [25–27], and many other types
amples has been described.

Many discriminant methods have been described in the
ture. Both Fischer’s linear discriminant analysis (FLDA)[28]
nd quadratic discriminant analysis (QDA)[28] can be used i
ases where the number of objects (greatly) exceeds the

Fig. 1. Explanation of sum-of-squar
n

-

-

f the excluded sample is predicted. A well-balanced m
esults in a minimal number of false assignments.

Another method to assess the validity of a model is by
utation. In this process, the effects of the random assign
f objects to groups are examined.

Fig. 1gives a graphical representation of a hypothetical
et.

In this figure, twelve objects are described by two variab
1 and X2, located in three groups. Suitable classificatio

hese objects would lead to three dense populations, where
istances between the populations should be large. The ‘w

thin and sum-of-squares between groups.
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group distance’ gives a measure for the density of the clusters and
can be obtained by calculating the distances for each object to the
centre of its group. The ‘between-group distance’ can be used as
a measure for the separation of the three clusters and is obtained
by calculating the distance between the group centres. The ratio
of the ‘sum of distances between groups’ and the ‘sum of dis-
tances within’ groups should be maximal for proper clustering.
Since the ‘sum-of-squares’ is used in the calculation, we will
refer to SSB and SSW for sum-of-squares distances between and
within the groups, respectively. The initial situation inFig. 1A
results in an SSB/SSW ratio of 15.0. In a permutation pro-
cess, objects are assigned randomly to one of the three groups.
The result of a first (random) permutation is shown inFig. 1B.
The sum of distances within the clusters increases significantly,
while the sum of distances between the groups changes only
slightly. This has a dramatic effect on the ratio SSB/SSW (0.1).
Repeating this permutation process many times results in equally
many SSB/SSW ratios. A histogram of all these results is pre-
sented inFig. 1C. Most of the random permutations result in
SSB/SSW values between 0 and 1. The original situation, with
a SSB/SSW ratio of 15.0 is clearly the best classification of the
data.

The above calculations can be described mathematically[32]
for the between-group distance:
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the second-dimension column to the flame-ionization detec-
tor (FID). Columns were coupled with custom-made press-fits
(Techrom, Purmerend, The Netherlands). The carrier gas was
Helium at a constant head pressure of 250 kPa, resulting in a
column flow of approximately 1 mL/min at 40◦C. The tem-
perature for the first-dimension column oven was programmed
from 40◦C (5 min isothermal) at a rate of 2.5◦C/min to 300◦C
(20 min isothermal), followed by a negative ramp of 13◦C/min
to 40◦C (10 min isothermal).

The PTV injector was programmed from 40◦C to 250◦C
(5 min isothermal) with a ramp of 12◦C/s. These conditions
resulted in a selective discrimination from C30 hydrocarbon
upwards. The advantages of this approach are introduction of
a minimum of residual material and reducing the maximum
oven temperature, which reduces column degradation. These
steps result in an increased chromatographic stability in terms
of retention time. The modulation time was 7.5 s and the hot-
pulse duration was 300 ms. Both the hot pulse of the release
jet and the secondary oven were operated at an offset of 50◦C
above oven temperature. Liquid-nitrogen-cooled nitrogen gas
was used as modulating agent at a flow of∼17 L/min. A Zoex
auto-fill unit was used to enable continuous operation.

3.2. Instrument control and data processing

Instrument control and data acquisition were achieved with
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SB=
i=1

mi × (x̄i − x̄) (2)

For the within-group distance:

SW=
g∑

i=1

mi∑

j=1

(xij − x̄i)
2 (3)

hereg: number of groups;mi: number of objects for groupi;
ij: objecti of groupj.; x̄i: mean of groupi.; x̄: overall mean of ¯xi

. Experimental

.1. Instrumentation

The samples were analyzed using an Agilent 6890
Wilmington, DE, USA), equipped with a CTC CombiPA
utosampling unit (CTC Analytics, Zwingen, Switzerland),
CIS-4 Programmed-Temperature-Vaporization (PTV) in

or (Gerstel, Mulheim an der R̈uhr, Germany). This syste
as retrofitted with a Zoex KT2003 thermal modulator
quipped with a second dimension-column oven (Zoex, Linc
E, USA), enabling independent second-dimension col
eating. The column set consisted of a 10 m length× 0.25 mm

nternal diameter× 0.25�m film thickness DB1 column (J&W
cientific, Folsom, CA, USA) in the first dimension and
m length× 0.1 mm internal diameter× 0.1�m film thickness
PX50 column (SGE, Ringwood, Australia) in the sec
imension. The modulation was performed in a 1.6 m× 0.1 mm
PTMS deactivated fused silica capillary (BGB Analy
nwil, Switzerland). A fused-silica capillary of the same ma

ial with a length of approximately 50 cm was used to con
,

,

Z-Chrom elite (v2.61, Scientific Software Europe, Wille
tad, the Netherlands). Data were collected at 100 Hz to o
ufficient data points across a peak. Chromatograms
xported to the Chromatography Data Format (CDF, or

evel 2).
Data handling was performed in Matlab R14 (The Ma

orks, Natick, MA, USA) running on a Compaq EVO W60
omputer equipped with 1 Gb of RAM. Data-handling routi
ere developed in-house. In addition, the NetCDF toolbox
eological Survey, Woods Hole, MA, USA) was used.

.3. Samples

A set of 14 different oil samples, originating from one
eld, was selected by Shell International Exploration and
uction (SIEP, Rijswijk, The Netherlands). The samples w
ivided in the three subclasses A, B and C, referring to the r
oirs within the original oil field.

The samples were diluted ten-fold in cyclohexane (p.a. q
ty, Merck, Darmstadt, Germany) containing 0.1% (w/w) 1
ichlorobenzene (p.a. quality, Merck) as an internal standa

All samples were analyzed in duplicate. One sample was
yzed in five-fold. In the sequence two blanks and an alkane
ure, containing C5–C42 hydrocarbons in CS2, were included.

. Results and discussion

Samples were analyzed in a sequence in order to re
etention variations. The negative ramp in the oven prog
as used to obtain a highly repeatable temperature pro

hereby reducing retention-time shifts. The alkane mixture
sed to“spline” the data. In this process,n-alkanes were shifte
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Fig. 2. Typical GC× GC chromatogram of a crude oil.

to obtain constant second-dimension (relative) retention times.
The peak positions for a homologous series ofn-alkanes were
used to create a piecewise-linear shift function. This function
was subsequently applied to all samples in the sequence.

Fig. 2shows the two-dimensional chromatogram of a typical
crude-oil sample.

Since the data were acquired directly from the FID, a series
of second-dimension chromatograms was registered. Integration
of this signal therefore resulted in integrated second-dimension
chromatograms. However, the modulation process typically
resulted in three or four modulations across a first-dimension
peak. The total peak area of a certain component is the sum o
areas in the successive modulations. The automated summati
in the first dimension direction was performed with an algorithm
developed in-house. This algorithm goes through the data matri
in which integrated peak positions are put. After location of a
peak apex, it runs through a predefined path in the direction of th
first dimension axis. This path accounts for a certain deviation
in 2nd dimension position, due to concentration effects (result
ing in slightly fronting peaks and a higher second dimension
retention time) as well as for temperature effects (each succes
sive modulation is injected in a slightly higher 2nd dimension
oven temperature). If only one peak is found in the search path
the response for the peak is the sum of the peak areas. If mu
tiple peaks are found, the first derivative of the peak profile is
used to determine valleys between the peaks. Wrap-around
c lim-
i r of
p 2.5,
i sion
p

4

ated
p rma
r inter
e rimi-
n sion
r ans-
f imi-
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4.1.1. Alignment
Unfortunately, chromatographic techniques suffer from

retention shifts. This results in inconsistent retention times
within a series of samples. Since MVA techniques are unable to
deal with shifting peaks, alignment is a required pre-processing
step. The alignment algorithm for this study aims to eliminate
retention-time shifts for integrated peaks. The algorithm initial-
izes by positioning all found (combined) peak apices at their
retention coordinate in an imaginary data matrix. Subsequently,
the algorithm walks through the first data matrix for finding
peaks. If a peak is found, all other samples are checked whether
they also contain a peak in the same region. A maximum shift
of 15 datapoints in the second dimension axis and a shift of 1
datapoint in the first dimension direction is used to eliminate dif-
ferences in retention. If no peak was found in the selected region,
the peak arc was set at zero. Found peaks in the data matrix were
replaced by a zero entry. After completion of the first data matrix,
all other matrices were treated in a similar way. In the end, no
more peak areas were found in any of the data matrices. A final
check was performed to compare the total peak area before and
after alignment. An alignment routine developed in-house was
used to eliminate small variations in peak-apex locations. The
maximum allowed shift was one data point in the first dimension
(=7.5 s) and 15 points in the second dimension (=0.15 s).Fig. 3
shows the position of the aligned peaks.

After cut-off and alignment, a selection of 3904 peaks
r r
s ould
( lysis
t ring’
w

rated
c ap-
p The
S is-
f etter
t

g’.
S mber
o clas-
s tant
p are
a rge
ircumvented by continuing the search path beyond the
ts of the GC× GC chromatogram. In this step, the numbe
eak positions found was typically reduced by a factor of

ndicating an average of 2.5 modulations over a first-dimen
eak.

.1. Pre-processing

Typical crudes can contain about 6000 individual integr
eaks. This number includes peaks eluting in the isothe
egion of the chromatogram and components that are not
sting for quantitative analysis due to the selective disc
ation of the PTV. Components eluting from a first-dimen
etention time of 106 min upwards were not quantitatively tr
erred from the injector to the column and therefore el
ated.
f
on

x

e

-

-

,
l-

is

l
-

emained. The resulting dataset contained 30× 3904 (objects o
amples× variables or peaks). Such well-described data sh
at least theoretically) be very suitable for multivariate-ana
echniques. However, the PCDA result after ‘mean-cente
as disappointing (Fig. 4).
A good classification model should form dense, sepa

lusters. In our initial situation PCDA resulted in overl
ing clusters, indicating no separation between groups.
SB/SSW plot (Fig. 5) also turned out to be highly unsat

actory. The proposed classification turned out to be no b
han a random classification.

This observation can partly be explained by ‘over-fittin
ince each object is described by 3904 variables, the nu
f objects should be much larger than 30 to obtain proper
ification results. This seems trivial, but it is a very impor
roblem within the MVA field. Many analytical techniques
ble to provide highly detailed information, resulting in la

Fig. 3. Location of peaks after alignment.
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Fig. 4. PCDA of 3904 aligned peaks in 30 objects.

sets of data. The number of available samples usually does not
increase accordingly. Even dimension reduction using PCA was
insufficient to abstract sufficient relevant information, despite
the captured variance in 10 PC’s being 83%.

The second problem is the presence of uninformative data,
which is irrelevant for the differentiation between reservoirs.
Many peaks are indeed of little or no relevance. They contribute
hardly or not to the desired discrimination model. The other
source of irrelevant data is the integration process. Integration
of highly complex chromatographic signals inevitably results in
errors. Baseline-separated peaks can be quantified very accu-
rately; convoluted peaks are much-more difficult to integrate.
In the case of crude oil, certain regions of the chromatogram
do not contain any baseline, due to the continuous elution of
components. Quantification of such a signal obviously does not
yield relevant data, since the integration errors obscure relevant
information.

However, these irrelevant data are included when building the
discrimination model and performing the SSB/SSW calculation.
Distinction between informative and uninformative peaks can be
achieved by variable selection.

4.1.2. Variable selection
Variable selection is commonly performed to (strongly)

reduce the number of variables in a dataset. However, man

Fig. 6. Peaks selected on RSD between duplicates.

variable-selection strategies can be considered to be supervised,
i.e. variables are identified which support a certain group struc-
ture. Since supervised selection routines aim at finding compo-
nents supporting the proposed classification structure. However,
a different classification structure will also lead to a selection of
components. These routines are therefore solely dependent on
the classification structure. Even in a dataset containing ran-
dom numbers, supervised classification is capable of selecting
a number of (random) variables that would support the classifi-
cation.

Unsupervised variable selection seems, therefore, to be a
more appropriate choice. A suitable criterion can be established
by using the information gained from duplicate measurements.
Well-separated peaks in duplicate measurements show small rel-
ative standard deviations (RSD). All of the 14 samples were
analysed in duplicate, yielding 3904 peaks. Reliably quantified
peaks should have a small relative standard deviation between
duplicate measurements. This should be the case for all of the
14 duplicate measurements. In addition, the average RSD of the
14 samples should be under a certain threshold. Our variable-
selection technique selects only those peaks with an average
RSD under 10%. In our situation, there were 14 samples and
thus as many RSD values for each of the 3904 peaks. A selected
peak should have a small RSD value for each of the 14 sam-
ples. The average RSD value for any component over all the 14
samples should be as low as possible. Also, the standard devia-
t ding
v hile
o

cate
m iables
w ks.

eser-
v ny
s rim-
i reser-
v 292
s

4
imi-

n ark-
e had
Fig. 5. SSB/SSW distribution of 1000 random permutations.
yion between the 14 RSD values should be minimized, exclu
ariables for which one of the samples has a large RSD, w
ther objects have a small RSD value.

By restricting the average relative RSD between dupli
easurements (for each of the 3904 peaks) to 10%, 292 var
ere selected.Fig. 6shows the positions of the selected pea
Subsequent PCDA revealed clustering according to the r

oir origin. Inspection of the DA loadings did not reveal a
pecific ‘biomarker components’ that could be used to disc
nate between reservoirs. Differences between the three
oirs were the result of many small differences between the
elected peaks.

.1.3. Manual selection
Samples from the different reservoirs could not be discr

ated based on one or a few components (so-called biom
rs). Rather the differences in all of the included peaks
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Fig. 7. Position of 65 manual selected peaks.

to be considered. Therefore, verification of the groups had
to be performed using unsupervised MVA techniques applied
to a small subset of the data. To this end, a selection of 65
baseline-separated peaks was manually extracted from the chro-
matograms.Fig. 7shows the peak positions.

The resulting dataset was significantly better defined, hav-
ing the dimension of 30× 65 (samples× peaks). Before data-
analysis, mean centering was applied as a pre-processing tech-
nique.Fig. 8shows the result of principal-component analysis.

With only two PC’s, 96.9% of the variance was captured.
Samples in all groups (A, B and C) formed dense clusters,
implying a high similarity between the members of each group.
However, both duplicates of sample 4S94A seem to be very dif-
ferent from the other A-group members. These samples have
therefore to be considered as outliers. Based on these results,
the two samples are likely to belong to a different group (e.g.
originate from a different reservoir). Calculation of SSB/SSW
values can numerically support the outlier hypothesis.

The distance between the two duplicates of 4S94A can be
explained by the small percentage of variation in PC2. Small dif-
ferences between the samples are blown out of proportion. Pro-
jection pursuit yielded a somewhat improved clustering results,
as shown inFig. 9.

The observation that two samples are not classified correctly
obviously has severe implications for discriminant analysis.
Grouping/clustering of samples of incorrect origin evidently
r res.

Fig. 9. Projection pursuit after mean centering.

There are a number of possible solutions for this problem. The
first is to simply remove the two samples from the dataset before
the PCDA step. Trying to fit the samples into one of the two other
groups may also be a possible solution. The third option is to
define a new group in which the two duplicates of the samples
are included.

These three options were all investigated. Results can be
found inFigs. 10 and 11.

The SSB/SSW ratios were dramatically improved, while the
discriminant analysis resulted in much denser clusters. Based on
these results, sample 4S94A is best described as a new group,
since this hypothesis results in the best (highest) SSB/SSW ratio.

The suppliers of the samples gave the ultimate proof for the
hypothesis that sample 4S94A was different from the other A-
group members. This specific sample was taken during a pipeline
leakage. Instead of producing A-product, a mixture of A and
C was produced. The fourth option in which a separate class
is defined for the two samples inFigs. 10 and 11d describes
this situation best. However, this conclusion is not in line with
the PCA results. Since PCA scores are a linear combination,
mixtures of the groups would fall in-between the pure groups.
This could be (only partly) explained by the small number of
components (65 out of 3904), which may not be representative
for the entire sample.
esults in the calculation of incorrect DA-loadings and sco

Fig. 8. PCA after mean-centering of 65 manually selected peaks.
 Fig. 10. SSB/SSW results of 1000 random permutations.
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Fig. 11. PCDA results of different scenarios.

5. Conclusions

Comprehensive two-dimensional gas chromatography again
turns out to be highly suitable for measuring small dif-
ferences between complex samples. This has already been
demonstrated in various examples in the literature. How-
ever, improved modulation techniques (e.g. cryogenic mod-
ulation) lead to a drastically improved stability of retention
times. This facilitates the comparison of large series of sam-
ples and the use of sophisticated (multi-variate) data-analysis
methods.

The measured samples, consisting of crude oils from three
reservoirs within one oil field, were highly similar. The necessary
pre-processing techniques, such as integration and alignment,
resulted in 3904 peaks found in all 30 samples. However, using
discriminant analysis on this dataset, we were unable to calcu-
late discriminant scores based on which the samples could be
separated according to their origin. Variable selection turned out
to be essential to eliminate the problem of over-determination
of the data matrix.

Selection of variables based on the average relative standard
deviation between duplicate measurements, with an upper limit
to 10%, resulted in a reduction to 292 variables (peaks). When
this data was subjected to PCDA, clusters separating the reser-
voirs appeared.

Verification of the groups with PCA and projection pursuit
r tion
i tion
w oups
a tha
t ifica
t tion
s

ively
f
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