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Abstract

Comprehensive two-dimensional gas chromatographyx@) has proven to be an extremely powerful separation technique for the analysis of
complex volatile mixtures. This separation power can be used to discriminate between highly similar samples. In this article we will describe the ust
of GC x GC for the discrimination of crude oils from different reservoirs within one oil field. These highly complex chromatograms contain about
6000 individual, quantified components. Unfortunately, small differences in most of these 6000 components characterize the difference betwee
these reservoirs. For this reason, multivariate-analysis (MVA) techniques are required for finding chemical profiles describing the differences
between the reservoirs. Unfortunately, such methods cannot discern between ‘informative variables’, or peaks describing differences betwee
samples, and ‘uninformative variables’, or peaks not describing relevant differences. For this reason, variable selection techniques ate require
selection based on information between duplicate measurements was used. With this information, 292 peaks were used for building a discriminatic
model. Validation was performed using the ratio of the sum of distances between groups and the sum of distances within groups. This step result
in the detection of an outlier, which could be traced to a production problem, which could be explained retrospectively.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction this technigue, highly complex semi-volatile mixtures can be
analyzed in unsurpassed detail. GGC can separate complex
Chemists working in (gas) chromatography are continuouslgamples into thousands of individual components. Most exam-
faced with improved instrumentation and techniques. Developples in the literature concern a single or a few samples. However,
ments in injection techniques facilitate the injection of largethe comparison of a series of GOGC chromatograms can yield
volumes and ‘dirty’ samples, while selective detection allowsvery valuable information as well. Especially for highly simi-
detection of components at low levels. Moreover, developmentg&r samples, high-resolution techniques are essential to reveal
in electronics, such as flow control, strongly improve the repeataminute differences.
bility and reproducibility of the technique. Large data sets require other processing approaches than
All these developments have resulted in a dramaticallyconventional chromatograms. If there is no prior information
enhanced robustness of (gas) chromatographic methods. Thesgarding components of interest, the traditional approach of
also create the possibility to analyze large numbers of samples guantifying all components present and comparing them univari-
amore-or-less automated way, facilitating other types of applicaately is clearly not an attractive strategy. Multivariate-analysis
tions, such as high-throughput analysis and metabolism studi¢MVA) techniques provide better options for processing such
(metabolomics). large data sets. Such an approach is already adopted in, for
Instrumental advances also affect the applicability of compreexample, the field of metabolomifk 2]. By comparing two (or
hensive two-dimensional gas chromatography ¢¢GC). With  more) groups of subjects (e.g. sick versus healthy, treated ver-
sus untreated), valuable information on metabolic differences
between these groups can be obtained. However, this infor-
* Corresponding author. Tel.: +31 20 630 3601; fax: +31 206302911, Mation can only be attained when the number of objects is
E-mail address: v.vanmispelaar@shell.com (V.G. van Mispelaar). sufficiently large to eliminate natural variation between the sub-
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jects. This approach is not restricted to systems biology. Itis alsshorter length) than the first-dimension column, so that separa-

is applicable to other highly complex mixtures, such as crudeions in the second dimension are essentially much faster. The

oil. The chemical composition of crude oil is determined by itsstationary phase is selected such that this column separates on

origin and geochemical history. Both chemical composition angroperties other than volatility, such as molecular shape or polar-

boiling-point range can vary widely between different oil fields. ity. The two columns are coupled using a so-called modulator.

However, different reservoirs within one field have a similar ori- This device facilitates the continuous accumulation, refocusing

gin and a highly similar geochemical history, which can resultand injection of small portions of the first-column effluent into

in minute differences in chemical composition. the second-dimension column. With each modulation, a new
Crude oil can contain hydrocarbons from Gp to Ggp or second-dimension chromatogram is started. The detector, which

even higher, and the number of theoretical isomers is stunninglig positioned at the end of the second-dimension column, records

large. Techniques such as GG5C and GCx GC-MS are by these fast chromatograms. At the end of a chromatographic

far not sufficient to reveal the full complexity of this class of run, the chromatogram contains many of these fast separations

mixtures. The number of components that can be separated aimd series. After ‘demodulation[5], a two-dimensional chro-

identified using these techniques is nonetheless impressive. matogram is obtained, which is usually represented by a colour
From a chemometric point of view, these chromatograms arer contour plot.

highly interesting. Each object (or sample) is described by alarge In many applications, G& GC has proven to be an excellent

number of variables (or peaks). Classification of these objectechnique for the separation of very complex samples, such as

according to their origin can be achieved using discriminantpetrochemical product$—8], essential 0il§9,10], fatty acids

analysis (DA) methods. Such methods try to find profiles of{11,12] doping contro|13], flavour analysi§l4], residue analy-

variables in the data that differentiate between groups of objectsis[15], and cigarette smoK&6]. The combination of G&G GC

A priori information (which object belongs to which group) is and MVA techniques is described in various references with the

required. In many cases this information seems obvious. Faim of deconvolutiof17] and enhancing the detection limit

example, patients are healthy or sick. However, this informaf18]. Johnson et al. describe the use of a high-speeck@C

tion is not necessarily correct. In the example used, patient®r pattern recognition of jet fueld.9].

may not be diagnosed correctly or they may be suffering from

other disorders. Incorporating incorrect information into these?.2. Data analysis

so-called “supervised techniques” will clearly lead to erroneous . ) .

models. On the other hand, exploratory techniques, such as prin- Many analytical techniques exist that can generate large data

cipal component analysis, are not beneficial if the data containgets- The human mind is only capable of interpreting data in

a high number of uninformative variables. three-dimensions. Visualization of higher-dimensionality data
Therefore, a combination of supervised techniques, for thé(_aquires redu_ction techniques. Fortunately, muItivar?ate analy—

discovery of discriminating variables, and unsupervised techSiS Offers various approaches to reduce the data dimensional-

niques, for finding natural clusters in data, is potentially very'®: o _ _
strong. Classification and clustering problems can be solved using

In this study, we will apply GG« GC to a set of crude- WO types of techniques. Exploratory methods extract (natu-
oil samples from three reservoirs within an oil field. Since'@!) patterns in the data. Supervised classification techniques
no prior knowledge was available on the chemical compoYSe prior information (which objects belong to which groups)
nents that would discriminate between the three fields, as marf@ find differences (or similarities) between groups of sam-
components as possible needed to be separated and quantifi@@s-

Multivariate-analysis techniques facilitated the recovery of dis-

criminating components or component profiles. 2.2.1. Exploratory methods
2.2.1.1. PCA. The most commonly encountered exploratory

2. Theory method is principal-component analysis (PCA). In PCA, the
original variables are replaced by a (strongly) reduced number

21 GCx GC of uncorrelated (orthogonal) variables, called the principal com-
ponents.

One of the greatest and most significant advances for the Mathematically:
characterization of complex mixtures of volatile compounds ha§( —TxPI 4+ E 1)

been the advent of comprehensive two-dimensional gas chro-

matography. This technique was pioneered and advocated lwhere X: original data set containing (samplesk p (vari-

the late Phillips and co-worke}3,4]. Two different GC columns ~ ables);T: scores: (samplesk F (principal components)P':

are used in G& GC. The fist-dimension column is (usually) a transposed loadings containirg (principal componentsy p
conventional capillary GC column, with a typical internal diam- (variables)E: residuals, variation not explained by model

eter of 25Qum. Most commonly, this column contains a non-  The principal components are constructed in such a way, that
polar stationary phase, so that it separates components largehe first principal component (PC1) represents the main source
based on their vapor pressures (boiling points). The seconaf variation in the original data set. The second PC is orthogonal
dimension column is considerably smaller (smaller diameterto the first and represents the maximum variance not explained
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in PC1. The third PC again is orthogonal to the first two PC’sher of variables. In situations where the number of variables
etc. Each PC is a linear combination of the original variablesexceeds the number of objects, PCA and partial least squares
The contribution of each variable is expressed in the principal{PLS) are used to reduce the dimensionality of the data. The
component loadings. principal components or latent variables are then subjected to
The number of PCs gives an indication of the model complextinear discriminant analysis. These techniques are described
ity. If the data are highly correlated, a few PCs will be sufficientin the literature as partial-least-squares discrimination analysis
to reproduce the original data. A way of presenting the data fronfPLSDA) [29] and principal-component discriminant analysis
this technigue is the score plot. Related objects (belonging to thg®CDA)[30]. They have been used successfully in various types
same groups) have similar scores and will consequently tend w@f applications. Regularized discriminant analysis (RID2J]
cluster. has been proposed for data sets where the number of variables
only slightly exceeds the number of objects.

2.2.1.2. Projection pursuit. Another unsupervised projection
technique is projection pursuit (PR0]. Unlike PCA, the main  2.2.2.1. PCDA. Discriminant analysis of data containing more
objective of which is to explain variance in the data, PP searchegriables than objects can be preceded by principal-component
interesting low-dimensional linear projections in the data. Thisanalysis to reduce the number of variables. The projections
is achieved by optimizing the projection index (PI), which can(scores) of the samples on the principal components are used
be regarded as an objective function. In literature, several praas a starting point for FLDA. Graphical representation of both
jection indices have been descrid@g]. the objects (in a score plot) and the discriminant loadings pro-
vides valuable information on relations between objects and on

2.2.2. Supervised techniques important variables in the data set.

Discriminant-analysig21,22] methods can be applied if
attention is focused on differences between known groups of.2.3. Validation
samples. The technique is based on the assumption that samplesThere are several ways to validate a (discrimination) model.
of the same group are more similar than samples belonging tim cross validation one or several objects are excluded, model is
different groups. The goal of DA is to find and identify struc- created using the remaining objects, and the group membership
tures in the original data, which show large differences betweenf the excluded sample is predicted. A well-balanced model
the group means. This process requires a priori knowledge aresults in a minimal number of false assignments.
which samples belong to the same group. Another method to assess the validity of a model is by per-

Discriminant analysis has been used for a wide variety ofnutation. In this process, the effects of the random assignment
problems in analytical chemistry. For example, the differentia-of objects to groups are examined.
tion of coffee[23,24] wine [25—-27] and many other types of Fig. 1gives a graphical representation of a hypothetical data
samples has been described. set.

Many discriminant methods have been described in the liter- In this figure, twelve objects are described by two variables,
ature. Both Fischer’s linear discriminant analysis (FLO28]  X; and X», located in three groups. Suitable classification of
and quadratic discriminant analysis (QD|®B] can be used in these objects would lead to three dense populations, whereas the
cases where the number of objects (greatly) exceeds the nurmdistances between the populations should be large. The ‘within-

Logical clustering model, Permutated clustering model,
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Fig. 1. Explanation of sum-of-squares within and sum-of-squares between groups.
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group distance’ gives a measure for the density of the clusters atde second-dimension column to the flame-ionization detec-
can be obtained by calculating the distances for each object to thier (FID). Columns were coupled with custom-made press-fits
centre of its group. The ‘between-group distance’ can be used §$echrom, Purmerend, The Netherlands). The carrier gas was
a measure for the separation of the three clusters and is obtainkl@lium at a constant head pressure of 250 kPa, resulting in a
by calculating the distance between the group centres. The rat@amlumn flow of approximately 1 mL/min at 4. The tem-

of the ‘sum of distances between groups’ and the ‘sum of disperature for the first-dimension column oven was programmed
tances within’ groups should be maximal for proper clusteringfrom 40°C (5 min isothermal) at a rate of 22&/min to 300°C
Since the ‘sum-of-squares’ is used in the calculation, we will(20 min isothermal), followed by a negative ramp of"C3min
referto SSB and SSW for sum-of-squares distances between atal40°C (10 min isothermal).

within the groups, respectively. The initial situationfig. 1A The PTV injector was programmed from 20 to 250°C
results in an SSB/SSW ratio of 15.0. In a permutation pro{5 min isothermal) with a ramp of XZ/s. These conditions
cess, objects are assigned randomly to one of the three groupssulted in a selective discrimination fronggChydrocarbon
The result of a first (random) permutation is showrig. 1B. upwards. The advantages of this approach are introduction of
The sum of distances within the clusters increases significanthg minimum of residual material and reducing the maximum
while the sum of distances between the groups changes ontwen temperature, which reduces column degradation. These
slightly. This has a dramatic effect on the ratio SSB/SSW (0.1)steps result in an increased chromatographic stability in terms
Repeating this permutation process many times results in equalbf retention time. The modulation time was 7.5s and the hot-
many SSB/SSW ratios. A histogram of all these results is prepulse duration was 300 ms. Both the hot pulse of the release
sented inFig. 1C. Most of the random permutations result in jet and the secondary oven were operated at an offset o€ 50
SSB/SSW values between 0 and 1. The original situation, witlabove oven temperature. Liquid-nitrogen-cooled nitrogen gas
a SSB/SSW ratio of 15.0 is clearly the best classification of thavas used as modulating agent at a flow~df7 L/min. A Zoex

data. auto-fill unit was used to enable continuous operation.
The above calculations can be described mathemati&ally
for the between-group distance: 3.2. Instrument control and data processing
g _ ’ Instrument control and data acquisition were achieved with
SSB= Zmi x (xi — x) 2 EZ-Chrom elite (v2.61, Scientific Software Europe, Willem-
i=1 stad, the Netherlands). Data were collected at 100 Hz to obtain
For the within-group distance: sufficient data points across a peak. Chromatograms were
exported to the Chromatography Data Format (CDF, or AIA
g mj
— level 2).
— R V2 . .
SSW= ZZ(XU xi) C) Data handling was performed in Matlab R14 (The Math-
i=1j=1 works, Natick, MA, USA) running on a Compag EVO W6000

whereg: number of groupsy;: number of objects for groufp ~ computer equipped with 1 Gb of _R_AM. Data-handling routines
x;j objecti of groupy.; x;: mean of group.; x: overall mean of; ~ Were developed in-house. In addition, the NetCDF toolbox (US
Geological Survey, Woods Hole, MA, USA) was used.

3. Experimental 3.3. Samples

3.1. Instrumentation A set of 14 different oil samples, originating from one oil

field, was selected by Shell International Exploration and Pro-

The samples were analyzed using an Agilent 6890 GCqy,ction (SIEP, Rijswijk, The Netherlands). The samples were
(Wilmington, DE, USA), equipped with a CTC CombiPAL i iqed in the three subclasses A, B and C, referring to the reser-
autosampling unit (CTC Analytics, Zwingen, Switzerland), andvoirs within the original oil field.

a CIS-4 Programmed-Temperature-Vaporization (PTV) injec-  1he samples were diluted ten-fold in cyclohexane (p.a. qual-

tor (Gerstel, Mulheim an der W, Germany). This system v Merck, Darmstadt, Germany) containing 0.1% (w/w) 1,2-
was retrofitted with a Zoex KT2003 thermal modulator andgjichorobenzene (p.a. quality, Merck) as an internal standard.
equipped with a second dimension-column oven (Zoex, Lincoln, All samples were analyzed in duplicate. One sample was ana-

NE, _USA)' enabling independent second-dimension COIumWyzed in five-fold. In the sequence two blanks and an alkane mix-
heatmg. The column set cqn&stgd of 2 10 m length25 mm ture, containing 6-Cy2 hydrocarbons in C§ were included.
internal diametex 0.25um film thickness DB1 column (J&W

Scientific, Folsom, CA, USA) in the first dimension and a4, Results and discussion

2m lengthx 0.1 mm internal diametex 0.1p.m film thickness

BPX50 column (SGE, Ringwood, Australia) in the second Samples were analyzed in a sequence in order to reduce
dimension. The modulation was performedinal.6®1mm retention variations. The negative ramp in the oven program
DPTMS deactivated fused silica capillary (BGB Analytik, was used to obtain a highly repeatable temperature program,
Anwil, Switzerland). A fused-silica capillary of the same mate-thereby reducing retention-time shifts. The alkane mixture was
rial with a length of approximately 50 cm was used to connectused to“spline” the data. In this process;alkanes were shifted
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[ ‘ ‘ ' ' ' ' ‘ : =] 4.1.1. Alignment

Unfortunately, chromatographic techniques suffer from
retention shifts. This results in inconsistent retention times
within a series of samples. Since MVA techniques are unable to
deal with shifting peaks, alignment is a required pre-processing
step. The alignment algorithm for this study aims to eliminate

2 tR [seconds]
] @ e (5] [=2] ~

Pl !l it ot i 1 retention-time shifts for integrated peaks. The algorithm initial-
THLL e :;frﬂ:.'. AL ' R . | izes b_y posmor_ung a_\ll fou_nd (gombmed) peal_< apices at their
+""‘&"l"h‘ S """‘7“‘""‘?1"%, ‘ﬂ‘mﬂﬂ‘ *llm‘?"'-""‘" ) , retention coordinate in an imaginary data matrix. Subsequently,
125 25 875 50 625 75 875 100 T3 125 the algorithm walks through the first data matrix for finding
tg [minutes] peaks. If a peak is found, all other samples are checked whether

they also contain a peak in the same region. A maximum shift
of 15 datapoints in the second dimension axis and a shift of 1
datapointin the first dimension direction is used to eliminate dif-
ferences in retention. If no peak was found in the selected region,
to obtain constant second-dimension (relative) retention t|me§ihe peak arc was set at zero. Found peaks in the data matrix were
The peak positions for a homologous series-@flkanes were  replaced by a zero entry. After completion of the first data matrix,
used to create a piecewise-linear shift function. This functiory|| other matrices were treated in a similar way. In the end, no
was subsequently applied to all samples in the sequence.  more peak areas were found in any of the data matrices. A final
Fig. 2shows the two-dimensional chromatogram of a typicalcheck was performed to compare the total peak area before and
crude-oil sample. after alignment. An alignment routine developed in-house was
Since the data were acquired directly from the FID, a seriegsed to eliminate small variations in peak-apex locations. The
of second-dimension chromatograms was registered. Integratigiaximum allowed shift was one data pointin the first dimension
of this signal therefore resulted in integrated second-dimensiop-7 5 s) and 15 points in the second dimension (=0.15ig).3
chromatograms. However, the modulation process typicallhows the position of the aligned peaks.
resulted in three or four modulations across a first-dimension After cut-off and alignment, a selection of 3904 peaks

peak. The total peak area of a certain component is the sum @émained. The resulting dataset containeck @04 (objects or
areas in the successive modulations. The automated summatigimples« variables or peaks). Such well-described data should
in the first dimension direction was performed with an algorithm(at |east theoretically) be very suitable for multivariate-analysis
developed in-house. This algorithm goes through the data matriechniques. However, the PCDA result after ‘mean-centering’
in which integrated peak positions are put. After location of awas disappointingFig. 4).

peakapex, itruns through a predefined pathinthe directionofthe A good classification model should form dense, separated
first dimension axis. This path accounts for a certain deviatiory|ysters. In our initial situation PCDA resulted in overlap-
in 2nd dimension position, due to concentration effects (resultping clusters, indicating no separation between groups. The
ing in slightly fronting peaks and a higher second dimensionssp/ssw plot Fig. 5) also turned out to be highly unsatis-
retention time) as well as for temperature effects (each succeggctory. The proposed classification turned out to be no better
sive modulation is injected in a slightly higher 2nd dimensionthan a random classification.

oven temperature). If only one peak is found in the search path, This observation can partly be explained by ‘over-fitting'.
the response for the peak is the sum of the peak areas. If mMUbince each object is described by 3904 variables, the number
tiple peaks are found, the first derivative of the peak profile isof objects should be much larger than 30 to obtain proper clas-
used to determine valleys between the peaks. Wrap-around dication results. This seems trivial, but it is a very important
circumvented by continuing the search path beyond the limproblem within the MVA field. Many analytical techniques are

its of the GCx GC chromatogram. In this step, the number ofgpe to provide highly detailed information, resulting in large
peak positions found was typically reduced by a factor of 2.5,

indicating an average of 2.5 modulations over a first-dimension
peak.

Fig. 2. Typical GCx GC chromatogram of a crude oil.

4.1. Pre-processing

R [seconds]

Typical crudes can contain about 6000 individual integrated
peaks. This number includes peaks eluting in the isothermal <~
region of the chromatogram and components that are not inter-
esting for quantitative analysis due to the selective discrimi- 1 ; ;
natlon_ of t_he PTV. Components eluting from a f|r_st-_d|men5|on T TR T R TR
retention time of 106 min upwards were not quantitatively trans- 't [minutes]

.. . R
ferred from the injector to the column and therefore elimi-
nated. Fig. 3. Location of peaks after alignment.
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Fig. 4. PCDA of 3904 aligned peaks in 30 objects. variable-selection strategies can be considered to be supervised,

i.e. variables are identified which support a certain group struc-
sets of data. The number of available samples usually does ntre. Since supervised selection routines aim at finding compo-
increase accordingly. Even dimension reduction using PCA waBents supporting the proposed classification structure. However,
insufficient to abstract sufficient relevant information, despitea different classification structure will also lead to a selection of
the captured variance in 10 PC's being 83%. components. These routines are therefore solely dependent on

The second problem is the presence of uninformative datdhe classification structure. Even in a dataset containing ran-
which is irrelevant for the differentiation between reservoirs.dom numbers, supervised classification is capable of selecting
Many peaks are indeed of little or no relevance. They contribut@ number of (random) variables that would support the classifi-
hardly or not to the desired discrimination model. The othercation.
source of irrelevant data is the integration process. Integration Unsupervised variable selection seems, therefore, to be a
of highly complex chromatographic signals inevitably results inmore appropriate choice. A suitable criterion can be established
errors. Baseline-separated peaks can be quantified very acddy using the information gained from duplicate measurements.
rately; convoluted peaks are much-more difficult to integrateVell-separated peaks in duplicate measurements show smallrel-
In the case of crude oil, certain regions of the chromatograngtive standard deviations (RSD). All of the 14 samples were
do not contain any baseline, due to the continuous elution oinalysed in duplicate, yielding 3904 peaks. Reliably quantified
components. Quantification of such a signal obviously does nd€aks should have a small relative standard deviation between
yield relevant data, since the integration errors obscure relevagplicate measurements. This should be the case for all of the
information. 14 duplicate measurements. In addition, the average RSD of the

However, these irrelevant data are included when building thd4 samples should be under a certain threshold. Our variable-
discrimination model and performing the SSB/SSW calculationselection technique selects only those peaks with an average
Distinction between informative and uninformative peaks can b&SD under 10%. In our situation, there were 14 samples and

achieved by variable selection. thus as many RSD values for each of the 3904 peaks. A selected
peak should have a small RSD value for each of the 14 sam-
4.1.2. Variable selection ples. The average RSD value for any component over all the 14

Variable selection is commonly performed to (strongly) S@mples should be as low as possible. Also, the standard devia-
reduce the number of variables in a dataset. However, marijon between the 14 RSD values should be minimized, excluding
variables for which one of the samples has a large RSD, while
other objects have a small RSD value.
" | Calculated SSB/SSW=0.06 By restricting the average relative RSD between duplicate
measurements (for each of the 3904 peaks) to 10%, 292 variables
were selectedrig. 6 shows the positions of the selected peaks.
Subsequent PCDA revealed clustering according to the reser-
voir origin. Inspection of the DA loadings did not reveal any
specific ‘biomarker components’ that could be used to discrim-
inate between reservoirs. Differences between the three reser-
voirs were the result of many small differences between the 292
selected peaks.

Frequency
D
(=]

I
(=]
T

n
o
T

it : 4.1.3. Manual selection
T Samples from the different reservoirs could not be discrimi-
SSB/SSW ratio >
nated based on one or a few components (so-called biomark-
Fig. 5. SSB/SSW distribution of 1000 random permutations. ers). Rather the differences in all of the included peaks had
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to be considered. Therefore, verification of the groups had Fig. 9. Projection pursuit after mean centering.

to be performed using unsupervised MVA techniques applied

to a small subset of the data. To this end, a selection of 65 ] ) ]
baseline-separated peaks was manually extracted from the chrb2€re are a number of possible solutions for this problem. The
matogramsFig. 7 shows the peak positions. firstis to simply remove the two samples from the dataset before

The resulting dataset was significantly better defined, hath® PCDAstep. Trying tofit the samples into one of the two other
ing the dimension of 3& 65 (samplesc peaks). Before data- 9roups may also be_ a po_s,S|bIe solution. The third option is to
analysis, mean centering was applied as a pre-processing te(g,p_fme a new group in which the two duplicates of the samples
nique.Fig. 8shows the result of principal-component analysis, &€ included. _ _ _

With only two PC’s, 96.9% of the variance was captured. The_se _three options were all investigated. Results can be
Samples in all groups (A, B and C) formed dense clustersfound inFigs. 10 and 11 _ _ _
implying a high similarity between the members of each group. = 1ne SSB/SSW ratios were dramatically improved, while the
However, both duplicates of sample 4S94A seem to be very difdiSCriminant analysis resulted in much dens_er clusters. Based on
ferent from the other A-group members. These samples haJBese results, sample 4S94A is best described as a new group,
therefore to be considered as outliers. Based on these resul@ce this hypothesis results in the best (highest) SSB/SSW ratio.
the two samples are likely to belong to a different group (e.g. The su_ppllers of the samples gave_the ultimate proof for the
originate from a different reservoir). Calculation of SSB/SSwhypothesis that sample 4S94A was different from the other A-
values can numerically support the outlier hypothesis. group members. This specn‘l_c sample was taken_durlng apipeline

The distance between the two duplicates of 4S94A can bl¢akage. Instead of producing A-product, a mixture of A and
explained by the small percentage of variation in PC2. Small dif© Was produced. The fourth option in which a separate class
ferences between the samples are blown out of proportion. Pré3 defined for the two samples Higs. 10 and 1d describes
jection pursuit yielded a somewhat improved clustering resultst,h's situation best. However, this conclu5|on.|s not in Img Wl.th
as shown irFig. 9. thg PCA results. Since PCA scores are a linear combination,

The observation that two samples are not classified correctitixtures of the groups would fall in-between the pure groups.
obviously has severe implications for discriminant analysis./ s could be (only partly) explained by the small number of
Grouping/clustering of samples of incorrect origin evidently©@mponents (65 out of 3904), which may not be representative
results in the calculation of incorrect DA-loadings and scoresfOr the entire sample.

0.05 T T . . . 1200 T r — . .
Excluding sample 4594A
T . 1000+ B/W=0.58
& 0  C-reservoir 1
5 i 800
% -0.05 ’ Brreservolr A-reservoir i Py f Sample 4594A to class C
o S Original classification B/W=0.59
a 2 600 B/W=0.33 I
5 01| o Sample 4S94A to
o L 400l separate class
£ BIW=0.77
3
w -0.15 i
%/ Outlier ? 200+
02 -0.2 -0.1 0 0.1 0.2 0.3 E 0.3 0.4 0.5 0.6 0.7 0.8
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Fig. 8. PCA after mean-centering of 65 manually selected peaks. Fig. 10. SSB/SSW results of 1000 random permutations.
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Fig. 11. PCDA results of different scenarios.
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